Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.075$
$S=1.024$
1741 reflections
83 parameters
Only coordinates of H atom refined

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0306 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=1.12 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-1.43 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: none } \\
\text { Scattering factors from } \\
\text { International Tables for } \\
\text { Crystallography (Vol. } \mathrm{C} \text {) }
\end{gathered}
$$

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stoe \& Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1997). C53, 1166-1170

A Tricapped Trigonal Prismatic EuO($\left.\mathbf{H}_{2} \mathrm{O}\right)_{8}$ Site in Trihydrogen Tris(octaaquaeuropium) Dipotassium Digermanohexatitanooctadeca-tungstate(14-) Tridecahydrate

Moriyasu Sugeta and Toshiniro Yamase
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku, Yokohama 226,
Japan. E-mail: tyamase@res.titech.ac.jp

(Received 2I May 1996; accepted I8 February 1997)

Abstract

This paper reports the first observation of a tricapped trigonal prismatic $\mathrm{EuO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ site containing one anion O and eight aqua O atoms in $\mathrm{K}_{2}\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{3} \mathrm{H}_{3}\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right] .13 \mathrm{H}_{2} \mathrm{O}$. Each half of the $\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right]^{14-}$ anion, which exhibits almost the same structure as the anion in $\mathrm{K}_{9} \mathrm{H}_{5}\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$, is coordinated by either three Eu^{3+} or two K^{+}atoms.

Comment

During the course of our studies of the crystal structures of photoluminescent polyoxometalloeuropates, the crystal fields of the Eu^{3+} sites in the polyoxotungstoeuropates and polyoxomolybdoeuropates have been characterized as a square antiprism and tricapped trigonal prism, respectively. $\mathrm{Na}_{9}\left[\mathrm{EuW}_{10} \mathrm{O}_{36}\right] \cdot 32 \mathrm{H}_{2} \mathrm{O}$ (Sugeta \& Yamase, 1993) and $\mathrm{K}_{15} \mathrm{H}_{3}\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{~W}_{5} \mathrm{O}_{18}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\right] .37 \mathrm{H}_{2} \mathrm{O}$ (Yamase, Naruke \& Sasaki, 1990) have square antiprismatic EuO_{8} and $\mathrm{EuO}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ sites, respectively. $\left(\mathrm{NH}_{4}\right)_{12} \mathrm{H}_{2}\left[\mathrm{Eu}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}\left(\mathrm{MoO}_{4}\right)\left(\mathrm{Mo}_{7} \mathrm{O}_{24}\right)_{4}\right] .13 \mathrm{H}_{2} \mathrm{O}(\mathrm{Nar}-$ uke, Ozeki \& Yamase, 1991) and $\mathrm{Eu}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}\left(\mathrm{Mo}_{8} \mathrm{O}_{27}\right)$.$6 \mathrm{H}_{2} \mathrm{O}$ (Yamase \& Naruke. 1991) have tricapped trigonal prismatic $\mathrm{EuO}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ and $\mathrm{EuO}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ sites, respectively. It has recently been found that $\mathrm{Na}_{7} \mathrm{H}_{19}\left\{\left[\mathrm{Eu}_{3} \mathrm{O}(\mathrm{OH})_{3}\left(\mathrm{OH}_{2}\right)_{3}\right]_{2} \mathrm{Al}_{2}\left(\mathrm{Nb}_{6} \mathrm{O}_{19}\right)_{5}\right\}$ has bi-
capped trigonal prismatic $\mathrm{EuO}_{5}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ sites where the Eu atoms are coordinated by both OH^{-}and $\mathrm{H}_{2} \mathrm{O}$ groups (Ozeki, Yamase, Naruke \& Sasaki, 1994). In all polyoxometalloeuropates, the photoexcitation of the $\mathrm{O} \rightarrow M$ ligand-to-metal charge-transfer bands (LMCT) leads to the $f-f$ luminescence of Eu^{3+} as a result of the intramolecular energy transfer from the $\mathrm{O} \rightarrow M$ LMCT states to ${ }^{5} D_{1}$ and ${ }^{5} D_{0}$ states of Eu^{3+}. Since the luminescence properties of the Eu^{3+} ion depend on the structural variety of the Eu ${ }^{3+}$ crystal fields, it has been proposed that the number of aqua ligands coordinated to the Eu^{3+} atom is an important factor in the deactivation of the ${ }^{5} D_{0}$ state due to the weak vibronic coupling with vibrational states of the high-frequency OH oscillators of the aqua ligand (Yamase, 1994). This led us to expect that the plots of the reciprocal ${ }^{5} D_{0}$ lifetimes against the known number of coordinated aqua ligands will produce a high correlation coefficient, as found for various aminopolycarboxylate Eu complexes (Horrocks \& Sudnick, 1981). To obtain a meaningful plot for the polyoxometalloeuropates, further Eu^{3+} sites with a variety of aqua ligands should be structurally characterized. The present paper describes the crystal structure of $\mathrm{K}_{2}\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{3} \mathrm{H}_{3}\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right] \cdot 13 \mathrm{H}_{2} \mathrm{O}$, which exhibits the first tricapped trigonal prismatic $\mathrm{EuO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ site containing one O anion and eight aqua ligands.

Fig. 1 shows the structure of $\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}_{8}\right]_{3}\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9}\right.\right.\right.$ $\left.\left.\mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right]^{5-}$. The framework of $\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right]^{14-}$, which is isostructural with the anion in $\mathrm{K}_{9} \mathrm{H}_{5}\left[\left(\mathrm{GeTi}_{3}-\right.\right.$ $\left.\left.\mathrm{W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$ (Yamase, Ozeki, Sakamoto, Nishiya \& Yamamoto, 1993), is a condensed aggregate of two hypothetical $A-\alpha-\left[\mathrm{GeW}_{9}(\mathrm{TiOH})_{3} \mathrm{O}_{37}\right]^{7-}$ Keggin units that have lost three $\mathrm{H}_{2} \mathrm{O}$ molecules by forming Ti -$\mathrm{O}-\mathrm{Ti}$ bridges. The W-O [1.70(2)-2.31 (2) A] and $\mathrm{Ti}-\mathrm{O}[1.82(2)-2.24(2) \AA]$ bond distances in the $\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right]^{14-}$ anion are almost the same as those in $\mathrm{K}_{9} \mathrm{H}_{5}\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right] .16 \mathrm{H}_{2} \mathrm{O}$ [W-O 1.66 (3)-2.38(2), Ti-O 1.78 (2)-2.27 (2) Å] (Yamase, Ozeki, Sakamoto, Nishiya \& Yamamoto, 1993). The two central GeO_{4} tetrahedra in the anion are nearly ideal, with $\mathrm{Ge}-\mathrm{O}$ distances of 1.71 (1)-1.75 (2) \AA and $\mathrm{O}-\mathrm{Ge}-\mathrm{O}$ angles of $108(1)-110.8(6)^{\circ}$, whereas the GeO_{4} tetrahedra in $\mathrm{K}_{9} \mathrm{H}_{5}\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right] .16 \mathrm{H}_{2} \mathrm{O}$ are slightly distorted with $\mathrm{Ge}-\mathrm{O}$ distances ranging from 1.63 (2) to 1.77 (2) \AA and $\mathrm{O}-\mathrm{Ge}-\mathrm{O}$ angles ranging from $107(1)$ to $113(1)^{\circ}$. One of the two half-anions of $\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right]^{14-}$ coordinates to three Eu^{3+} cations and the other to two K^{+}cations. The tricapped trigonal prismatic $\mathrm{EuO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ site in the complex contains one terminal O atom ($\mathrm{O} 6, \mathrm{O}^{\mathrm{i}}$ or Ol 0) of the half-anion and eight aqua O atoms. One trigonal face of the $\mathrm{Eu}(\mathrm{Eu} 2)$ site is defined by $\mathrm{O} 6(\mathrm{O} 10)$ from the half-anion and

Fig. 1. ORTEP (Johnson, 1965) plot of the $\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right]^{14-}$ anion and $\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{3}$ units with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $x, \frac{1}{2}-y, z$.]
two aqua O atoms O47 and O52 (O56 and O56') and the other trigonal face by three aqua O atoms O 48 , O51 and 053 (057, O57 ${ }^{\mathrm{i}}$ and 059). The three approximately rectangular faces are then capped by the aqua O atoms O49, O50 and O54 (O55, O55 ${ }^{1}$ and O58). The crystallographic site symmetries of the Eu and Eu 2 sites are C_{1} and C_{s}, respectively. The Eu-O bond lengths [2.42(3)-2.45(5) A] for the prism vertices of both the Eu 1 and Eu 2 sites are similar. These distances are comparable to the bond distance [2.415 (1) \AA] for the vertices of the tricapped trigonal prismatic $\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]^{3+}$ site in $\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{4}\right)_{3}$ (Gerkin \& Reppart, 1984). For the three capping O atoms at both the Eul and Eu2 sites, the Eul-O54 distance [2.88 (5) \AA] is extremely long compared with other Eu-O distances [Eu1-O49 2.46(3), Eu1-O50 2.48 (3), Eu2-O55 or -O55i 2.59 (3), Eu2-O58 2.40 (5) Å]. The capping O

Fig. 2. Part of the unit cell viewed along the a axis. K atoms are represented by the shaded ellipsoids. The broken lines represent $\mathrm{K}^{+}-\mathrm{O}$ bonds less than $3.3 \AA$. [Symmetry codes: (i) $x, \frac{1}{2}-y, z$: (ii) $-x,-y, 1-z$; (iii) $-x, \frac{1}{2}+y, 1-z$; (iv) $-x, 1-y, 1-z$; (v) x, y, $-1+z$; (vi) $x, \frac{1}{2}-y,-1+z$; (vii) $-x,-y, 2-z$; (viii) $-x, \frac{1}{2}+y$. $2-z$; (ix) $-x, 1-y, 2-z$.]
atom for the Eu site in $\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SO}_{4}\right)_{3}$ has an $\mathrm{Eu}-\mathrm{O}$ bond distance of $2.542 \AA$ (Gerkin \& Reppart, 1984). There is no significant difference in the distance from the capping O atom to its least-square face among atoms O49, O50 and O54 (1.63, 1.86 and $1.77 \AA$, respectively). However, it should be noted that the distance from Eul to the least-square face is asymmetric: the O54-facing plane and Eul are $1.08 \AA$ apart, while the O49- and O50-facing planes are 0.77 and $0.58 \AA$ apart, respectively. Such a displacement of Eul from the center of the trigonal prism toward the 047...O48 edge is due to short O6 \cdots O53 and $051 \cdots$ O52 distances (2.94 and $3.48 \AA$, respectively) compared with the $\mathrm{O} 47 \cdots \mathrm{O} 48$ distance ($3.97 \AA$), with a resultant elongation of the EulO54 distance.
There are eight O atoms surrounding the K^{+}cation with $\mathrm{K}^{+} \ldots \mathrm{O}$ distances less than $3.3 \AA$: one is the lattice water O66 atom having a $\mathrm{K}^{+} \cdots \mathrm{O}$ distance of 2.96 (5) \AA, four belong to the half-anion with distances of 2.96(2)-3.08(2) \AA, and three belong to the neighboring half-anion with distances of 3.00 (2)3.29 (2) \AA (Fig. 2). The observation of three Eu^{3+} and two K^{+}cations per $\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right]^{14-}$ anion indicates that the complex can be formulated as $\mathrm{K}_{2}\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{3} \mathrm{H}_{3}\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right] \cdot 13 \mathrm{H}_{2} \mathrm{O}$ for its charge neutrality. As was anticipated, the lifetime of the ${ }^{5} D_{0}$ luminescence of the title compound ($\sim 0.14 \mathrm{~ms}$ at 30 K) is the shortest among known polyoxometalloeuropates. $\mathrm{Eu}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}\left(\mathrm{Mo}_{8} \mathrm{O}_{27}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$, in which the $\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ site contains six aqua ligands coordinating to Eu^{3+}, has the next shortest lifetime (0.17 ms at 300 K) of the ${ }^{5} D_{0}$ luminescence.

Experimental

$\mathrm{K}_{9} \mathrm{H}_{5}\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$ was prepared according to Yamase, Ozeki, Sakamoto, Nishiya \& Yamamoto (1993). 0.5 g of $\mathrm{K}_{9} \mathrm{H}_{5}\left[\left(\mathrm{GeT}_{13} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right] .16 \mathrm{H}_{2} \mathrm{O}$ was dissolved in 10 ml water and aqueous KOH was added dropwise to adjust the pH to 5.8 . 1 ml of an aqueous solution containing 0.07 g $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} .6 \mathrm{H}_{2} \mathrm{O}$ was added dropwise to the above solution at room temperature. The pH of the solution was adjusted to 2.8 with diluted HNO_{3} solution. Colorless crystals were isolated from the solution after 3 d .

Crystal data

$\mathrm{K}_{2}\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{3} \mathrm{H}_{3}\left[\left(\mathrm{GeTi}_{3}-\right.\right.$
$\left.\left.\mathrm{W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right] \cdot 13 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=6177.5$
Monoclinic
$P 2_{1} / m$
$a=13.177(2) \AA$
$b=18.645(3) \AA$
$c=21.800(3) \AA$
$\beta=99.82(1)^{\circ} \AA$
$V=5277(1) \AA^{3}$
$Z=2$
$D_{x}=3.89 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=10.0-12.5^{\circ}$
$\mu=22.5 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle
$0.5 \times 0.2 \times 0.2 \mathrm{~mm}$
Colorless

024	-0.213 (2)	1/4	0.649 (1)	0.020 (5)
025	-0.294 (2)	1/4	0.422 (1)	0.017 (5)
026	-0.095 (2)	1/4	0.495 (1)	0.017 (5)
027	-0.256 (1)	0.1748 (8)	0.5354 (6)	0.012 (3)
028	0.135 (2)	1/4	0.637 (1)	0.024 (6)
029	-0.143(1)	0.1198 (9)	0.7128 (7)	0.021 (4)
030	0.062 (1)	0.1804 (9)	0.7393 (7)	0.029 (4)
031	-0.085 (2)	1/4	0.784 (1)	0.041 (7)
032	0.266 (1)	0.1767 (9)	0.7339 (7)	0.030 (4)
033	0.025 (1)	0.061 (1)	0.8041 (8)	0.031 (4)
034	-0.127(1)	0.1317 (9)	0.8481 (7)	0.030 (4)
035	0.407 (2)	$1 / 4$	0.815 (1)	0.041 (7)
036	0.225 (1)	0.100 (1)	0.8297 (8)	0.035 (5)
037	0.015 (1)	0.063 (1)	0.9268 (9)	0.047 (5)
038	-0.090 (2)	1/4	0.922 (1)	0.033 (6)
039	0.365 (1)	0.167 (1)	0.9047 (8)	0.043 (5)
O40)	0.219 (1)	0.099 (1)	0.9471 (8)	0.036 (5)
041	0.051 (1)	0.180 (1)	0.9963 (8)	0.037 (5)
042	0.393 (2)	1/4	1.006 (1)	0.050 (8)
043	0.246 (1)	0.180 (1)	1.0514 (8)	0.040 (5)
044	0.220 (2)	1/4	0.824 (1)	0.022 (5)
045	0.058 (1)	0.1749 (9)	0.8669 (7)	0.026 (4)
046	0.209 (2)	1/4	0.951 (1)	0.034 (7)
047	0.656 (2)	0.131 (2)	0.836 (1)	0.12 (1)
048	0.668 (3)	-0.083 (2)	0.850 (2)	0.15 (1)
049	0.725 (2)	0.012 (2)	0.754 (1)	0.12 (1)
O50	0.528 (2)	0.033 (2)	0.907 (1)	0.090 (9)
051	0.573 (3)	-0.079 (2)	0.728 (2)	0.16 (1)
052	0.576 (3)	0.113 (3)	0.723 (2)	0.21 (2)
053	0.423 (3)	-0.058 (2)	0.809 (2)	0.13 (1)
054	0.427 (4)	0.023 (3)	0.685 (2)	0.24 (2)
055	0.063 (2)	0.121 (2)	1.184 (1)	0.13 (1)
056	-0.107 (2)	0.180 (2)	1.107 (1)	0.13 (1)
057	-0.028 (2)	0.171 (2)	1.276 (1)	0.11 (1)
058	-0.187 (4)	1/4	1.196 (2)	0.15 (2)
059	0.165 (5)	1/4	1.252 (3)	0.19 (2)
O60	0.598 (4)	1/4	0.907 (2)	0.13 (2)
061	0.420 (3)	1/4	0.664 (2)	0.12 (2)
O62	0.667 (5)	1/4	0.758 (3)	0.23 (2)
063	0.269 (1)	0.152 (1)	0.5887 (9)	0.052 (6)
064	-0.533 (2)	0.042 (1)	0.403 (1)	0.076 (8)
065	0.112 (2)	0.057 (1)	1.082 (1)	0.074 (8)
O66	-0.038 (3)	0.041 (3)	1.286 (2)	0.20 (2)
067	0.211 (3)	1/4	1.374 (2)	0.09 (1)
068	0.345 (6)	1/4	1.198 (3)	0.25 (2)

Table 2. Selected bond lengths (\AA)

Eul-O6	2.43 (2)	Eu2-O57	2.45 (3)
Eu1-O47	2.44 (3)	Eu2-O58	2.40 (5)
Eul-O48	2.44 (4)	Eu2-O59	2.44 (6)
Eul-O49	2.46 (3)	$\mathrm{Kl}-\mathrm{O}^{1}$	3.00 (2)
Eul-O50	2.48 (3)	$\mathrm{Kl}-\mathrm{O}^{1}$	3.14 (2)
Eul-O51	2.43 (4)	$\mathrm{K} 1-017$	3.08 (2)
Eul-O52	2.45 (5)	$\mathrm{K} 1-\mathrm{O} 17^{1}$	3.29 (2)
Eul-O53	2.42 (3)	$\mathrm{K} 1-\mathrm{O} 20$	3.04 (2)
Eul-O54	2.88 (5)	$\mathrm{K} 1-\mathrm{O} 21$	3.03 (2)
$\mathrm{Eu} 2-\mathrm{O} 10$	2.44 (3)	$\mathrm{K} 1-\mathrm{O} 23$	2.96 (2)
Eu2-O55	2.59 (3)	$\mathrm{Kl}-\mathrm{Ob}^{21}$	2.96 (5)
Eu2-O56	2.42 (3)		
Symmetry	$x,-y$,	ii) $-x,-$	

As shown in Fig. 2, the ellipsoids for Ti3, Ti4, W6-W10 and Ge 2 in the half-anion coordinating to the three Eu atoms are elongated in the direction approximately perpendicular to the mirror plane. In addition, average $U_{\text {eq }}$ or $U_{\text {iso }}$ values for $\mathrm{Ti}, \mathrm{W}, \mathrm{Ge}$ and O atoms in this half-anion ($0.029,0.046$, 0.034 and $0.039 \AA^{2}$, respectively) are considerably larger than those for the corresponding atoms in the other halfanion ($0.024,0.024,0.019$ and $0.026 \AA^{2}$, respectively). These observations indicate that the crystal contains a distorted $\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{3}\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right]^{5-}$ anion in which the halfanion coordinated to the three Eu atoms shifts slightly from its idealized position toward either side of the mirror plane.

Such a distortion of the anion would be induced by a slight shift of the Eul (and Eu1 ${ }^{\text {i }}$) position, which is associated with the displacement of several aqua ligands, especially atoms 052 and 054, which have large $U_{\text {iso }}$ values of 0.21 (2) and $0.24(2) \AA^{2}$, respectively. The coordination of a large number (eight) of aqua ligands and one O atom from the half-anion to an Eu atom explains the shift of the Eu atom due to the disordered structure of aqua ligands, which leads to the displacement of W, Ti and Ge atoms in the half-anion. The rather large residual maximum and minimum Fourier peaks (4.12 and $-4.89 \mathrm{e}^{-3}$, respectively) are located around the W9 atom at short distances of 0.48 and $1.05 \AA$, respectively. This is due to the large displacement of the W9 atom compared with the other atoms.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992a). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1992b). Program(s) used to solve structure: SIR88 (Burla et al., 1989). Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: TEXSAN.

This work was supported in part by a Grant-inAid for Scientific Research on Priority Areas, 'New Development of Rare Earth Complexes', No. 06241104, from the Ministry of Education, Science, Sport and Culture.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1005). Services for accessing these data are described at the back of the journal.

References

Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. \& Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.

Gerkin, R. E. \& Reppart, W. J. (1984). Acta Cryst. C40, 781-786.
Horrocks, W. D. \& Sudnick, D. R. Jr (1981). Acc. Chem. Res. 14, 384-392.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1992a). MSC/AFC Diffractometer Control Software. Version 4.3.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992b). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Naruke, H., Ozeki, T. \& Yamase, T. (1991). Acta Cryst. C47, 489492.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Ozeki, T., Yamase, T., Naruke, H. \& Sasaki, Y. (1994). Inorg. Chem. 33, 409-410.
Sugeta, M. \& Yamase, T. (1993). Bull. Chem. Soc. Jpn, 66, 444-449.
Yamase, T. (1994). Polyoxometalates: From Platonic Solids to AntiRetroviral Activity, edited by M. T. Pope \& A. Müller, pp. 337-358. Dordrecht: Kluwer Academic Publishers.
Yamase, T. \& Naruke, H. (1991). J. Chem. Soc. Dalton Trans. pp. 285-292.
Yamase, T., Naruke, H. \& Sasaki, Y. (1990). J. Chem. Soc. Dalton Trans. pp. 1687-1696.
Yamase, T., Ozeki, T., Sakamoto, H., Nishiya, S. \& Yamamoto, A. (1993). Bull. Chem. Soc. Jpn, 66, 103-108.

Acta Cryst. (1997). C53, 1170-1173

A Caesium Zinc Phosphate Constructed from Ladder-Like Four-Ring Chains

Pingyun Feng, Xianhu Bu and Galen D. Stucky
Chemistry Department, University of California, Santa
Barbara, CA 93106, USA. E-mail: pingyun@sbxray.ucsb.edu

(Received 2 January 1997; accepted 20 March 1997)

Abstract

The synthesis, thermal properties and crystal structure of caesium trizinc bis[hydrogenphosphate(2-)] phosphate, $\mathrm{Cs}\left[\mathrm{Zn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)\right]$, are described. This new caesium zinc phosphate has a three-dimensional framework structure containing one-dimensional channels.

Comment

Divalent metal phosphates are of interest for a number of reasons, one of which is that they can form framework structures which are zeolite-like (Gier \& Stucky, 1991). Zeolites are aluminosilicates containing cages and channels, and can be used for a variety of commercial applications such as heterogeneous catalysis, ion exchange and adsorption (Breck, 1974). In our search for novel framework structures based on divalent metal phosphates and arsenates (Feng, Bu \& Stucky, 1995, 1997a, b; Bu, Feng \& Stucky, 1996; Bu, Gier \& Stucky, 1996; Feng, Bu, Tolbert \& Stucky, 1997), we discovered a new caesium zinc phosphate. The synthesis, crystal structure and thermal properties of this material are reported here.

The asymmetric unit is $\mathrm{Cs}\left[\mathrm{Zn}_{3}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{PO}_{4}\right)\right]$. All three unique Zn sites have tetrahedral coordination geometry. Of the 12 O atoms, two (O11 and O12) are terminating hydroxyl groups on P2 and P3, and two (O 2 and O 3) are trigonally coordinated (excluding the possible coordination to the extra framework Cs atoms) between two Zn cations and one P cation. The other eight O atoms are bicoordinated between one Zn cation and one P cation. The presence of trigonally coordinated O atoms and the associated three-membered rings (sixmembered rings if O atoms are included) involving two Zn atoms and one P atom usually leads to a dense framework and is a feature that distinguishes this salt from zeolite-like open-framework zincophosphates.

The framework contains channels along the crystallographic a axis (Fig. 1). The rectangularly shaped window of each channel is elongated along the unit-cell c axis and the frame of the window opening contains as many as 16 tetrahedral atoms. The three-dimensional framework of this compound comprises structural units which are commonly used to build zeolite structures:

